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“We require exquisite 

numerical precision over 

many logical steps to 

achieve what brains 

accomplish in very 

few short steps.”

The Computer and the 

Brain, 1958, p. 63. 

John von Neumann, 1903-1957
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biological postulates
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A mathematical approach

mathematical inference

biological interpretation 



4

1. An ANN or learning machine

THPAM (Temporal Hierarchical Probabilistic Associative Memory)

Cognitive Neurodynamics, 2010

2. A biologically plausible model

LOM (Low-Order Model of Biological NNs)

Neural Computation, 2011

3.   An ANN or learning machine
CIPAM (Clustering Interpreting Probabilistic Associative Memory)

Neurocomputing, 2012

Results
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• What information does a spike train carry?

• What computation do dendritic trees do?

• How is supervised learning performed?

• How is unsupervised learning performed?

• How is information stored in synapses?

• What computation do spiking and nonspiking somas 
do?

• How are corrupted, distorted and occluded patterns 
recognized?

• How are neurons organized into a neural network?

Single model providing

logically coherent answers to

holy-grail questions:

Low-Order Model (LOM)
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What information should be

communicated

between spiking neurons?
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Recognition of 26 Upper Case Letters:

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

What letter is this?
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Relative frequencies of the 26 letters:

A    8.17%  (binary code 01000001)

W   2.36%  (binary code 01010111)

What is the best representation?

8 somas needed to generate 8 bits.

Each bit assigned by the probability:

8.17/(8.17+2.36) or 2.36/(8.17+2.36)

A   W

Conjecture: 

Neurons operate in groups generating labels.
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Single model answering
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Dendrites

• Use more than 60% of the energy consumed 

by the brain

• Occupy more than 99% of the surface of 

some neurons

• Are the largest component of neural tissue 

in volume

Yet, dendrites are missing in all ANNs.
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Neurons

A model of a dendrite tree
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Experiment required to test the hypothesis:

Measure the inputs and output of dendritic branches.

HYPOTHESIS
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• What information does a spike train carry?

• What computation do dendritic trees do?

• How is supervised learning performed?

• How is unsupervised learning performed?

• How is information stored in synapses?

• What computation do spiking and nonspiking somas 
do?

• How corrupted, distorted and occluded patterns 
recognized?

• How are neurons organized into a neural network?

Single model answering

holy-grail questions:
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Supervised Covariance Learning

tc
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   tjtjtitiijij vvwwDD


Synapse

w/ ijD

From outside the modeltiw

Hebbian-type rule:

Spiking

Soma i



20

• What information does a spike train carry?

• What computation do dendritic trees do?

• How is supervised learning performed?

• How is unsupervised learning performed?

• How is information stored in synapses?

• What computation do spiking and nonspiking somas 
do?

• How corrupted, distorted and occluded patterns 
recognized?

• How are neurons organized into a neural network?

Single model answering

holy-grail questions:



21

Unsupervised Covariance Learning

Hebbian-type rule:
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Code Covariance Matrix D

learned by

unsupervised learning
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Decovariance Retrieval
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• What information does a spike train carry?

• What computation do dendritic trees do?

• How is supervised learning performed?

• How is unsupervised learning performed?

• How is information stored in synapses?

• What computation do spiking and nonspiking
somas do?

• How corrupted, distorted and occluded patterns 
recognized?

• How are neurons organized into a neural network?

Single model answering

holy-grail questions:
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• What information does a spike train carry?

• What computation do dendritic trees do?

• How is supervised learning performed?

• How is unsupervised learning performed?

• How is information stored in synapses?

• What computation do spiking and nonspiking neurons 
do?

• How are corrupted, distorted and occluded 
patterns recognized?

• How are neurons organized into a neural network?

Single model answering

holy-grail questions:
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GENERALIZATION:

Using information in an RF subfield 

w/o error to estimate the label of the RF

RF (Receptive Field)

of a PU

RF subfield

w/ error

RF subfield

w/o error

MAXIMAL GENERALIZATION:

Generalization from the largest RF

subfield w/o error

Maximal region <=> Best subjective probability available

Maximal Generalization
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Example Masking Matrix M
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 

matrix  diagonal a      

00

00

00

,,ˆdiag2

22

11

1

1

1

2

1

1

5
3

2

2

1























 

 









  

qq

j

J

j

m

ji

i

i

i

i

j

M

M

M

M

iiIM
j









 I 

33

Generalization from the largest receptive 

subfield that matches a stored subfield
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• What information does a spike train carry?

• What computation do dendritic trees do?

• How is supervised learning performed?

• How is unsupervised learning performed?

• How is information stored in synapses?

• What computation do spiking and nonspiking somas 
do?

• How corrupted, distorted and occluded patterns 
recognized?

• How are neurons organized into a neural network?

Single model answering

holy-grail questions:
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Supervised Processing Unit (SPU)
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Unsupervised Processing Unit (UPU)
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Delay

DelayDelay

Delay
Delay

Delay

 3UPU 1

 2UPU 2 2UPU 1

 1UPU 3 1UPU 1  1UPU 2

Clusterer

A Network of Unsupervised Processing Units (UPUs)
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 1UPU 3 1UPU 1  1UPU 2

 2UPU 2 2UPU 1

 2SPU 2 2SPU 1 3UPU 1

  31pv

 3SPU 1

  21pv

  2
2pv

 22r

 3
1r

Interpreter

Clusterer

Offshoot Supervised Processing Units (SPUs)

 2
3r

 2SPU 3

 2
1r
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Current and Future Work

• Applications

- Spatial Pattern Recognition

Handwriting, face, target, fingerprint, DNA, smell, taste, 

explosive/weapon (in baggage, containers)

- Temporal Pattern Understanding/Classification

Touch, speech, text, video (computer vision), financial data

• Theory

- Extension to visual, auditory, gustatory, olfactory,

somatosensory, and somatomotor systems

- Motion detection, attention selection, prediction



Learning Machine for BIG Data
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DLMs including CNN are present workhorses.

They are inadequate.



Capabilities needed for learning big data
1. Handcrafting labels impossible for big data

Learning without supervision

2.   Big data too big for iterative optimization

Learning with photographic memory

3.   Big data streaming in

Online learning

4.   Big data not all conditioned for processing

Maximal generalization (treating noise, 

distortion, occlusion, translation, scaling, etc.)

5.   Big data containing info about hierarchical worlds

Learning the hierarchical worlds

(Recall the success of CNN.)

6.   Big data containing temporal data (e.g., videos, texts)

Learning time series
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Wish list!!



Capabilities of LOM

1. Learning data w/o handcrafted labels 

2. Learning big data with photographic memory

3. Learning streaming data online                

4. Maximal generalization (treating noise, distortion, 
occlusion, translation, scaling, etc.)

5. Learning the hierarchical worlds

(Recall the success of CNN.)

6.    Learning temporal big data (e.g., videos, texts)
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Wish list!! Fulfilled!!



LOM for finding all the gene mutations

that cause each type of disease

and their empirical probabilities
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jameslo@umbc.edu
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Thank you!

Questions, comments, suggestions?

If you are interested, please talk to or email me. 

jameslo@umbc.edu


