Harmonization of Systems and Software Engineering Processes

James W. Moore, F-IEEE, CSDP
The MITRE Corporation
June 2007

The author's affiliation with The MITRE Corporation is provided for identification purposes only, and is not intended to convey or imply MITRE’s concurrence with, or support for, the positions, opinions, or viewpoints expressed by the author.
Introduction

- ISO/IEC JTC 1/SC 7 (software and systems engineering) has a large collection of standards.
 - Some of the key process standards are difficult to use together.

- IEEE Software and Systems Engineering Standards Committee has a large collection of standards.
 - Some of the key process standards were adopted (and slightly modified) from SC 7.

- The goal of process harmonization is to:
 - Create a single definitive set of processes ...
 - ... described in a set of standards that are easy to use together ...
 - ... agreed and shared by both organizations.

- This presentation describes progress toward that goal.
Harmonization of 15288 and 12207

Two technically excellent standards are at the center of process harmonization:

A large international user base wants standards that can be used together for development of systems with software content

- However, the standards were difficult to use together.
- Furthermore, a set of amendments to 12207 (for the process assessment community) compounded the difficulty.

A two-step project is underway to “harmonize” the two standards.

- The first step – aligning the processes – will complete in late 2007.
- The second step – integration – will seek a single set of shared software/system processes.

In addition, a companion project, 24748, is underway. It will provide a guide to life cycle management using the two standards.
Status of Harmonization

- A project to solve the problem in "one swell foop" made little progress in two years.

- In May 2005, IEEE Computer Society made a proposal for Harmonization "Lite".
 - Perform enough harmonization to achieve most of the benefits.
 - Emphasize "alignment" of the standards, rather than complete "integration".
 - Focus on interoperability of the standards.
 - Focus on backward compatibility with previous versions of the standards

- ISO/IEC JTC 1/SC 7/WG 7 accepted the proposal and formulated a two-phase plan:
 - Phase 1, Alignment: Structural refactoring, emphasizing backward compatibility
 - Coincides with normal 5-year maintenance cycle required of international standards.
 - Phase 2, Integration: Full integration of processes
 - An integration model will be developed and non-backward-compatible changes will be considered.

- Coordinated projects were initiated in ISO/IEC JTC 1/SC 7 and in IEEE.

- Draft revisions prepared for both standards are now in near-final ballot.

- Completion of alignment phase is expected by year-end 2007.
Overview of approach for Harmonization

Agreed and technically correct ISO/IEC 12207 and guide - can be used with confidence

ISO/IEC 12207:2007 aligned and using a common nomenclature and structure with ISO/IEC 15288

ISO/IEC XYZ General life cycle process set for systems and software

Small normative changes

Larger normative changes

Agreed and technically correct ISO/IEC 15288 and guide - can be used with confidence

ISO/IEC 15288:2007 using a common nomenclature and structure with ISO/IEC 12207

Guides and specific life cycle management process standards

Source: ISO/IEC JTC1/SC7 WG7 briefing material

May 2005

December 2007

Future
Many Standards are Names

A standard is a Name for an otherwise fuzzy concept

In a complex, multidimensional trade space of solutions ...

... a standard gives a name to a bounded region.

It defines some characteristics that a buyer can count on.

- Many software engineering standards assign names to practices or collections of practices.
- This enables communication between
 - Buyer and seller
 - Government and industry
 - Insurer and insured
Names are Important

We use names to localize the subject under discussion. But sometimes confusion results because we use different name spaces.

Would you know that these are different names for the same thing? Would you know without the map?
15288 and 12207 Give “Names” to Processes

- ISO/IEC 15288:2002 gives names to 25 processes in the life cycle of a system. It is more *descriptive* than 12207.

- ISO/IEC 12207:1995 gives names to 17 processes in the life cycle of a software product or service. It is more *prescriptive* than 15288.
 - (Two amendments re-described the processes for assessment purposes.)

- The names are important so that acquirers and suppliers can communicate regarding their practices.
 - “Oh, when you say ‘implementation’, you include ‘testing’? No, no, no, that’s a separate thing; our contract doesn’t include that!”

- The names are important as a basis for process evaluation and improvement.

- The names are important to provide a context for implementing *improved practices*. – Our goal.
Intended Relationships of Key System and Software Engineering Life Cycle Process Standards

Planned 24748: Guide to Life Cycle Management

Other standards providing details of selected SW processes

Revised 12207: Life cycle processes for SW
(And associated guide, 15271)

Revised 15289: Documentation

Revised 15288: Life cycle processes for systems
(And associated guide, 19760)

Other standards providing details of selected system processes

Revised 15026: Additional practices for higher assurance systems

Common vocabulary. Common process description conventions

Interoperation

Revised 16326: Project Mgmt

Revised 15939: Measurement

16085: Risk Mgmt

© 2007 The MITRE Corporation. All rights reserved
The Harmonization Problem

Starting from a diverse set of standards with …

– different terms
– different process sets
– different process architectures
– different levels of prescription, and
– different audiences*

… develop a revised set of standards with …

– a single vocabulary
– a single process set
– a single, uniform architecture
– a shared level of prescription, and
– suitability across the audiences

… all without needlessly disrupting current organizational investment based on usage of the current set of standards.

* Systems versus software and process definition versus process assessment
It is not required to use all architecture constructs in any particular document or for any particular process.
Relating Old Content to New Content

Processes \rightarrow Processes \rightarrow Processes \rightarrow Processes

Component Processes = Activities = Lower-level Processes = Activities

Tasks \rightarrow Notes \rightarrow PRM Annex

(P + O) \rightarrow (P + O) \rightarrow (P + O) \rightarrow (P + O) \rightarrow (P + O)

This chart is an overview. There are exceptions to the general cases.
Example Process: 15288 Stakeholder Requirements Definition Process

6.4.1.1 Purpose
The purpose of the Stakeholder Requirements Definition Process is to define the requirements for a system that can provide the services needed by users and other stakeholders in a defined environment.

6.4.1.2 Outcomes
As a result of the successful implementation ...

a) The required characteristics and context of use of services and operational concepts are specified.

b) The constraints on a system solution are defined.

c) Traceability of stakeholder requirements to stakeholders and their needs is achieved.

d) The stakeholder requirements are defined.

e) Stakeholder requirements for validation are identified.

6.4.1.3 Activities and Tasks
The project shall implement the following activities and tasks ...

a) Stakeholder Requirements Elicitation. This activity consists of the following tasks:

 1) Identify the individual stakeholders or stakeholder classes who have a legitimate interest in the system throughout its life cycle.

 NOTE This includes, but is not limited to, users, operators, ...

 2) Elicit stakeholder requirements.

b) Stakeholder Requirements Definition ...

c) Etc.

Caution: This wording may change during balloting.
Key Terminology and Concepts

- **Organization**: a person or a group of people and facilities with an arrangement of responsibilities, authorities and relationships [ISO 9000]
 - A part of an organization is an organization if it meets the definition.
 - An *individual* can be an organization if s/he meets the definition.
- **Party**: an organization entering into an agreement
- **Project**: an endeavour with defined start and finish dates undertaken to create a product or service in accordance with specified resources and requirements [adapted from ISO 9000]
Key Terminology and Concepts

An individual can be an organization.

Organizations conduct projects to do things, notably to deal with systems.

Organizations make agreements to acquire and supply products and services.

Agreeing organizations are called parties.
Key Terminology and Concepts

- **Process**: set of interrelated or interacting *activities* which transforms inputs into outputs [ISO 9000]
- **Product**: the result of a process [ISO 9000]
- **Service**: performance of activities, work, or duties associated with a product
Key Terminology and Concepts

A system is composed of system elements. Each element is implemented and then integrated into the system. One invocation of 15288 suffices to create a system composed of a set of elements.

However, 15288 states that a system element can itself be regarded as a system. So, 15288 can be invoked recursively to create a hierarchy of systems and their elements. A hierarchy of systems often implies a hierarchy of projects.
Sometimes a system element is to be implemented in software. The 12207 standard accepts this as one or more software items.

- 12207 uses a hierarchy of items – composed of components – composed of units.
- 12207 is not invoked recursively to create this hierarchy.

It is fundamental to 12207 that software exists only in the context of a system.
Key Terminology

- Every *system* has a *life cycle* which is viewed as composed of *stages*. (The standards do not require a particular set of stages.)
 - Each stage has a purpose and makes a contribution to the life cycle.
- Stages are initiated and terminated by *decision gates*.
- Stages may overlap and may be concurrent.
- The purpose of each stage is accomplished by executing *processes*.
- Any process may be useful in any stage.

A typical set of life cycle stages:

<table>
<thead>
<tr>
<th>Concept</th>
<th>Development</th>
<th>Production</th>
<th>Utilization</th>
<th>Support</th>
<th>Retire -ment</th>
</tr>
</thead>
</table>

- It is a common error to talk about life cycle stages when one really means processes or vice-versa.
- Locating practices with respect to processes provides much greater precision.
Anticipated Result of Process Alignment

Organization
- Project-Enabling Processes
 - Life Cycle Model Management
 - Infrastructure Management
 - Project Portfolio Management
 - Human Resource Management
 - Quality Management
- Agreement Processes
 - Supply
 - Acquisition

Project
- Project Mgmt Processes
 - Project Planning
 - Project Assessment & Control
- Project Support Processes
 - Decision Management
 - Risk Management
 - Configuration Management
 - Information Management
 - Measurement

Engineering
- Technical Processes
 - Stakeholder Requirements Defn
 - Requirements Analysis
 - Architectural Design
 - Implementation
 - Integration
 - Verification
 - Transition
 - Validation
 - Operation
 - Maintenance
 - Disposal

SW Implementation Processes
- SW Requirements Analysis
- SW Architectural Design
- SW Detailed Design
- SW Construction
- SW Integration
- SW Qualification Testing

SW Support Processes
- SW Requirements Management
- SW Configuration Management
- SW Quality Assurance
- SW Verification
- SW Validation
- SW Review
- SW Audit
- SW Problem Resolution
- SW Reuse Management
- Domain Engineering
- Reuse Asset Management
- Reuse Program Management
The Life Cycle Processes of 15288:2002

Adapted from chart by Anatol Kark
Building 15288:2007 – Technical Processes

15288:2007 has the same set of technical processes as 15288:2002
Building 15288:2007 – Project Processes

15288:2007 has a similar set of project processes as 15288:2002

From ISO/IEC 15939
Building 15288:2007 – Project-Enabling Processes

15288:2007 has a similar set of project-enabling processes as 15288:2002

Adapted from chart by Anatol Kark
Building 15288:2007 – Agreement Processes

15288:2007 has the same set of agreement processes as 15288:2002

Adapted from chart by Anatol Kark
The Life Cycle Processes of 15288:2007

- Agreement
 - Acquisition Process
 - Supply Process

- Project-Enabling
 - Life Cycle Model Management Process
 - Infrastructure Management Process
 - Project Portfolio Management Process
 - Human Resource Management Process
 - Quality Management Process

- Project
 - Project Planning Process
 - Project Assessment and Control Process
 - Decision Management Process
 - Risk Management Process
 - Configuration Management Process
 - Information Management Process
 - Measurement Process

- Technical
 - Stakeholder Reqmts Definition Process
 - Requirements Analysis Process
 - Architectural Design Process
 - Implementation Process
 - Integration Process
 - Verification Process
 - Transition Process
 - Validation Process
 - Operation Process
 - Maintenance Process
 - Disposal Process

Adapted from chart by Anatol Kark
The Life Cycle Processes of 12207:1995

<table>
<thead>
<tr>
<th>Primary</th>
<th>Supporting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquisition Process</td>
<td>Software Documentation Management Process</td>
</tr>
<tr>
<td>Supply Process</td>
<td>Software Configuration Management Process</td>
</tr>
<tr>
<td>Organizational</td>
<td>Software Quality Assurance Process</td>
</tr>
<tr>
<td>Improvement Process</td>
<td>Software Verification Process</td>
</tr>
<tr>
<td>Infrastructure Process</td>
<td>Software Validation Process</td>
</tr>
<tr>
<td>Training Process</td>
<td>Software Review Process</td>
</tr>
<tr>
<td>Management Process</td>
<td>Software Audit Process</td>
</tr>
<tr>
<td>Development Process</td>
<td>Software Problem Resolution Process</td>
</tr>
<tr>
<td>Process Implementation</td>
<td></td>
</tr>
<tr>
<td>System Requirements Analysis</td>
<td>Software Detailed Design</td>
</tr>
<tr>
<td>System Architectural Design</td>
<td>Software Coding & Testing</td>
</tr>
<tr>
<td>Operation Process</td>
<td>Software Integration</td>
</tr>
<tr>
<td>Maintenance Process</td>
<td>Software Qualification Testing</td>
</tr>
<tr>
<td>System Integration</td>
<td></td>
</tr>
<tr>
<td>System Qualification Testing</td>
<td></td>
</tr>
<tr>
<td>Software Installation</td>
<td></td>
</tr>
<tr>
<td>Software Acceptance Support</td>
<td></td>
</tr>
<tr>
<td>System Architectural Design</td>
<td></td>
</tr>
<tr>
<td>Software Requirements Analysis</td>
<td></td>
</tr>
<tr>
<td>Software Detailed Design</td>
<td></td>
</tr>
<tr>
<td>Software Design</td>
<td></td>
</tr>
<tr>
<td>Software Coding & Testing</td>
<td></td>
</tr>
<tr>
<td>Software Integration</td>
<td></td>
</tr>
<tr>
<td>Software Qualification Testing</td>
<td></td>
</tr>
<tr>
<td>Software Development</td>
<td></td>
</tr>
<tr>
<td>Software Requirements Analysis</td>
<td></td>
</tr>
<tr>
<td>Software Detailed Design</td>
<td></td>
</tr>
<tr>
<td>Software Testing</td>
<td></td>
</tr>
<tr>
<td>Software Coding & Testing</td>
<td></td>
</tr>
<tr>
<td>Software Integration</td>
<td></td>
</tr>
<tr>
<td>Software Qualification Testing</td>
<td></td>
</tr>
<tr>
<td>Software Configuration</td>
<td></td>
</tr>
<tr>
<td>Software Requirements Analysis</td>
<td></td>
</tr>
<tr>
<td>Software Detailed Design</td>
<td></td>
</tr>
<tr>
<td>Software Operation</td>
<td></td>
</tr>
<tr>
<td>Software Coding & Testing</td>
<td></td>
</tr>
<tr>
<td>Software Integration</td>
<td></td>
</tr>
<tr>
<td>Software Qualification Testing</td>
<td></td>
</tr>
<tr>
<td>Software Support</td>
<td></td>
</tr>
<tr>
<td>Software Requirements Analysis</td>
<td></td>
</tr>
<tr>
<td>Software Detailed Design</td>
<td></td>
</tr>
<tr>
<td>Software Maintenance</td>
<td></td>
</tr>
<tr>
<td>Software Coding & Testing</td>
<td></td>
</tr>
<tr>
<td>Software Integration</td>
<td></td>
</tr>
<tr>
<td>Software Qualification Testing</td>
<td></td>
</tr>
</tbody>
</table>

12207:2007 has the same set of SW support processes as 12207:1995
Building 12207:2007 – Software Reuse Processes

12207:2007 has a similar set of SW reuse processes as 12207 Amd.1 (which came from IEEE Std 1517).

From IEEE Std 1517 and from 12207 Amd
Building 12207:2007 – Software Implementation Processes

12207:2007 has a set of SW implementation processes similar to activities of the development process of 12207:1995 and component processes of 12207 Amd.1.

The new processes are lower-level processes of a “Software Implementation Process”.

© 2007 The MITRE Corporation. All rights reserved
Building 12207:2007 – 12207 Technical Processes

12207:2007 has a set of technical processes similar to system context activities of the development process of 12207:1995, the component processes of 12207 Amd.1, and the technical processes of 15288:2002.

From 15288 and 12207 Amd

From 15288

From 15288

Of course, 12207 has Maintenance and Operation processes similar to 12207:1995 and 15288:2002.
Building 12207:2007 – Project Processes

12207:2007 has the same set of project processes as 15288:2007.

<table>
<thead>
<tr>
<th>Acquisition Process</th>
<th>Supply Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management Process</td>
<td>Training Process</td>
</tr>
<tr>
<td>Infrastructure Process</td>
<td></td>
</tr>
</tbody>
</table>

Organizational Processes

- Improvement Process
- Management Process

Project Processes

- Project Planning Process
- Project Assessment and Control Process
- Decision Management Process
- Risk Management Process
- Configuration Management Process
- Information Management Process
- Measurement Process

Technical Processes

- Stakeholder Requirements Definition Process
- System Requirements Analysis Process
- System Architectural Design Process
- Implementation Process
- System Integration Process
- System Qualification Testing Process
- Software Installation Process
- Software Acceptance Support Process
- Software Operation Process
- Software Maintenance Process
- Software Disposal Process

The activities of the 12207:1995 Management Process have been binned into them.
Building 12207:2007 – Project-Enabling Processes

12207:2007 has the same set of project-enabling processes as 15288:2007.

The activities of 12207:1995 Improvement, Infrastructure, and Training Processes have been binned into them.
Building 12207:2007 – Agreement Processes

12207:2007 has the same set of agreement processes as 15288:2007.

<table>
<thead>
<tr>
<th>Agreement</th>
<th>Project</th>
<th>Technical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquisition Process</td>
<td>Project Planning Process</td>
<td>Stakeholder Reqmts Definition Process</td>
</tr>
<tr>
<td>Supply Process</td>
<td>Project Assessment and Control Process</td>
<td>System Requirements Analysis Process</td>
</tr>
</tbody>
</table>

Project-Enabling

- Life Cycle Model Management Process
- Infrastructure Management Process
- Project Portfolio Management Process
- Human Resource Management Process
- Quality Management Process
- Risk Management Process
- Configuration Management Process
- Information Management Process
- Measurement Process
- Implementation Process
- System Integration Process
- System Qualification Testing Process
- Software Installation Process
- Software Acceptance Support Process
- Software Operation Process
- Software Maintenance Process
- Software Disposal Process
The Life Cycle Processes of 12207:2007

Process Categories

Agreement
- Acquisition Process
- Supply Process

Project-Enabling
- Life Cycle Model Management Process
- Infrastructure Management Process
- Project Portfolio Management Process
- Human Resource Management Process
- Quality Management Process

Project
- Project Planning Process
- Project Assessment and Control Process
- Decision Management Process
- Risk Management Process
- Configuration Management Process
- Information Management Process
- Measurement Process

Technical
- Stakeholder Requirements Definition Process
- System Requirements Analysis Process
- System Architectural Design Process
- Implementation Process
- System Integration Process
- System Qualification Testing Process
- Software Installation Process
- Software Acceptance Support Process
- Software Operation Process
- Software Maintenance Process
- Software Disposal Process

SW Implementation
- Software Implementation Process
- Software Requirements Analysis Process
- Software Architectural Design Process
- Software Detailed Design Process
- Software Construction Process
- Software Integration Process
- Software Qualification Testing Process

SW Support
- Software Documentation Management Process
- Software Configuration Management Process
- Software Quality Assurance Process
- Software Verification Process
- Software Validation Process
- Software Review Process
- Software Audit Process
- Software Problem Resolution Process

SW Reuse
- Domain Engineering Process
- Reuse Asset Management Process
- Reuse Program Management Process
Anticipated Result of Process Alignment

Nearly identical

Software specialization of a system context process

Software specialization of a system context process

Software specialization of a system context process

Software process contributes to the outcomes of the system process

Software process contributes to the outcomes of the system process

Software process contributes to the outcomes of the system process

Software specialization of a system process

Software specialization of a system process

Software specialization of a system process

Users of the 12207 processes starred (*) above are permitted to use the corresponding 15288 technical process instead.

Users of the 12207 technical processes are permitted to use the corresponding 15288 technical process instead.
Selecting which Standard to Use

- Both 12207 and 15288 contain process models that are nearly identical:
 - The differences are rational rather than accidental.
- 15288 describes the processes at the system level.
- 12207 specializes the same processes to software, and adds processes specific to software.

<table>
<thead>
<tr>
<th>Process Type</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>To deal with a system</td>
<td>use 15288.</td>
</tr>
<tr>
<td>To deal with a software element of a system</td>
<td>use 15288 and the software processes of 12207.</td>
</tr>
<tr>
<td>To deal with a software product or service (with minimal surrounding system)</td>
<td>use 12207.</td>
</tr>
</tbody>
</table>
The Harmonization Problem – Problems addressed in the Alignment Phase

Starting with a diverse set of standards with …

- Different terms
- Different process sets
- Different process architectures
- Different levels of prescription
- Different audiences

... develop a revised set of standards with …

- A single vocabulary
- A single process set
- A single, uniform architecture
- A shared level of prescription
- Suitable across the audiences

... all without needlessly disrupting current organizational investment based on usage of the current set of standards.

* System versus software and process definition versus process assessment
Status and Plan

- We expect to complete Alignment phase by end of 2007
- We are starting to plan for the full integration phase
 - A Study Group was created to determine scope and content of Integration Phase of Harmonization to achieve a fully harmonized view of the system and software life cycle processes
 - Integration will consider:
 - Common purpose and outcomes
 - Document architecture
 - Level of prescription of activities and tasks
 - Treatment of life cycle models and other issues
 - Treatment of services
 - Common verification and validation concepts
 - Common configuration management concepts
 - Deferred recommendations
 - Alignment with other applicable standards
 - Rationalization of application guides
Related Projects

- **24774** summarizes the agreed conventions for describing processes.

- **15289** summarizes the data products produced by the processes of 15288 and 12207. It exists, but must be revised to deal with the 2007 revisions.

- Three standards provide additional details on selected life cycle processes: **15939**, Measurement; **16085**, Risk management; **16326**, Project management.

- **15026** provides additional practices for the assurance of systems and software when particular critical properties are required.

- **24765** is a database of vocabulary that will occasionally be published as a conventional printed standard:
 - Database is publicly available at: http://www.computer.org/sevocab
Relating Assurance to Life Cycle Processes

At the center of assurance is the concept of life cycle maintenance of an assurance case.

Problem: How to relate the important tasks involved in assurance to the existing life cycle processes, without creating new processes.

Adapted from a chart by Paul Croll
A New Concept: The “Process View”

- Addresses a particular engineering interest
- Gathers together process activities that address those interests
- Cuts across all or part of the life cycle

Like a process, a process view has:
- Purpose
- Outcomes

Unlike a process, it does *not* have activities and tasks. Instead, it selects activities and tasks from existing processes and adds guidance on how to use them to achieve the purpose and outcomes.
System and software assurance process view

- **Purpose:** ... develop, maintain and provide grounds for confidence and decision making, throughout its life cycle, that the system and its constituent software meets its safety, security and dependability goals or objectives, and possesses the related required safety, security and dependability properties.

- **Outcomes:** As a result of successful execution of the process view:
 - Goals and objectives for safety, security, dependability and any other designated critical properties are formulated.
 - Product assurance-related objectives, properties, or characteristics are explicitly selected for special attention and application of this standard to address the goals and objectives.
 - Requirements for the achievement of these objectives, properties, or characteristics are defined.
 - Measures for the requirements are selected and related to the desired characteristics.
 - Criteria for the achievement or degree or achievement of these objectives, properties, or characteristics are selected and traced to requirements.
 - Approaches for achieving the objectives, properties, or characteristics are planned, designed, and implemented, as well as demonstrating and documenting that achievement.
 - The extent of achievement is continuously monitored, documented, and communicated to stakeholders and managers.
 - An assurance case documenting and communicating the extent of achievement is specified, developed, and maintained as an element of the system.
 - The artefacts for documenting, analyzing, and communicating the required or claimed properties and characteristics and the extent of achievement are specified, developed, and maintained.
 - Requirements of the approval authority are satisfied and necessary licenses or certifications are received.

Caution: This wording may change during balloting.
Status of Process Harmonization Projects

<table>
<thead>
<tr>
<th>Project</th>
<th>Title</th>
<th>Stage</th>
<th>Target</th>
<th>IEEE plans</th>
</tr>
</thead>
<tbody>
<tr>
<td>24748</td>
<td>Guide to life cycle management</td>
<td>Entering PDTR ballot</td>
<td>December 2008</td>
<td>Adoption</td>
</tr>
<tr>
<td>12207</td>
<td>SW LC processes</td>
<td>Entering FDIS ballot</td>
<td>December 2007</td>
<td>Joint project</td>
</tr>
<tr>
<td>15288</td>
<td>System LC processes</td>
<td>Entering FDIS ballot</td>
<td>December 2007</td>
<td>Joint project</td>
</tr>
<tr>
<td>15289</td>
<td>LC data</td>
<td>Revision planned</td>
<td>June 2009?</td>
<td>Adoption</td>
</tr>
<tr>
<td>15939</td>
<td>Measurement process</td>
<td>About to be published</td>
<td>Sep 2007</td>
<td>Adoption</td>
</tr>
<tr>
<td>16085</td>
<td>Risk mgmt process</td>
<td>Published in 2006</td>
<td></td>
<td>Published in 2006</td>
</tr>
<tr>
<td>16326</td>
<td>Project mgmt</td>
<td>Entering FCD ballot</td>
<td>Sep 2008</td>
<td>Joint project</td>
</tr>
<tr>
<td>15026</td>
<td>System & SW assurance</td>
<td>Entering CD ballot</td>
<td>Dec 2008</td>
<td>Joint project</td>
</tr>
<tr>
<td>24765</td>
<td>Vocabulary</td>
<td>Entering CD ballot</td>
<td>Dec 2008</td>
<td>Joint project</td>
</tr>
<tr>
<td>24774</td>
<td>Process definition guide</td>
<td>About to be published; will be revised.</td>
<td>Dec 2007</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Normal stages:

| NP | ► | WD | ► | CD |► | PDTR | ► | FCD | ► | FDIS |► | DTR |► | Publish |

© 2007 The MITRE Corporation.
All rights reserved.
Questions?

For more information, contact presenter:

Jim Moore

moorej@mitre.org
Backup Slides
The Agreement Processes form the relationships between acquirer and supplier organizations.

The Project-Enabling Processes form the relationship between the organization and its projects.

The Project Processes manage the project.

The Technical Processes deal with the system.

The Software Processes are used to implement a software element of the system.

- SW Implementation
- SW Support
- SW Reuse
Agreement Processes

<table>
<thead>
<tr>
<th>Activities of the Acquisition Process</th>
<th>Activities of the Supply Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquisition preparation</td>
<td>Opportunity identification</td>
</tr>
<tr>
<td>Acquisition advertisement and supplier selection</td>
<td>Supplier tendering</td>
</tr>
<tr>
<td>Agreement initiation</td>
<td>Agreement initiation</td>
</tr>
<tr>
<td>Agreement monitoring</td>
<td>Agreement execution</td>
</tr>
<tr>
<td>Acquirer acceptance</td>
<td>Product/service delivery & support</td>
</tr>
<tr>
<td></td>
<td>Closure</td>
</tr>
</tbody>
</table>

- Two Agreement Processes:
 - Acquisition
 - Supply
- The activities of the two processes “talk to” each other.
- 12207 is specialized to software and is more prescriptive.
Project-Enabling “Processes”

- There are issues of scope and competency when system and software engineers try to define organizational processes. Therefore, these are really resource dependencies rather than complete process definitions.

- The dependencies may be grouped by subject area.

- “Processes”:
 - Life Cycle Model Management
 - Infrastructure Management
 - Project Portfolio Management
 - Human Resource Management
 - Quality Management

- 12207 is more prescriptive and specializes the processes to software.
Relationship of project-enabling processes to project

Note that some outcomes of project processes are stimuli to the organization.

Note that some outcomes of project-enabling processes are responses to the project.
Project Processes

- Two categories:
 - Project Management Processes (similar to PMBOK “process groups”):
 - *Project Planning, Project Assessment and Control*
 - Project Support Processes (similar to selected PMBOK “knowledge areas”):
 - *Decision Management, Risk Management, Configuration Management, Information Management, Measurement*

- 15288 and 12207 have nearly identical processes in this area.

- 12207 is more prescriptive re software project plans.
15288 Technical Processes

- Stakeholder Requirements Definition
- Requirements Analysis
- Architectural Design
- Implementation
 - Example: Implementation of a Sub-system
 - Example: Implementation of a Software Element
 - Example: Implementation of a Hardware Element
- Integration
- Verification
 - Center of gravity is “after-the-fact” verification that the integrated system achieves its requirements.
- Transition
- Validation
 - Center of gravity is “after-the-fact” evaluation that the completed system meets user needs.
- Operation
- Maintenance
- Disposal

Some see a “V Model” in this set of processes.

Connection to 12207
Software Implementation Processes

- **Software Implementation** is a specialization of System Implementation. It contains some lower-level processes distinct to software development.
 - Software Requirements Analysis
 - (Option to use 15288 process instead.)
 - Software Architectural Design
 - (Option to use 15288 process instead.)
 - Software Detailed Design
 - Software Construction
 - Software Integration
 - (Option to use 15288 process instead.)
 - Software Qualification Testing
 - (Option to use 15288 process instead.)
Software Supporting Processes

- Software Documentation
 - Focused on SW life cycle artifacts
- Software Configuration Management Process
 - Specialized to SW
- Software Quality Assurance Process
 - Specialized to SW
- Software Verification Process
 - Center of gravity is continuous verification
- Software Validation Process
 - Center of gravity is continuous validation
- Software Review Process
- Software Audit Process
- Software Problem Resolution Process
Software Reuse Processes

- Software Reuse Processes
 - Domain Engineering
 - Reuse Asset Management
 - Reuse Program Management

- These are grouped separately because
 - They inherently cut across project boundaries.
 - But, they don’t seem to be “enterprise” level processes.
 - They are sort of a “loose end”.

- Ultimately, these may be treated as a special kind of project.