Using Risk Management to Assess Effective Performance under ISO 9001 in COTS Implementations

Eugene Kirsch
Associate
CSQE, Lead Auditor ISO 9001
kirsch_eugene@bah.com

Version 1.1
McLean, VA
Table of Contents/Overview of Presentation

- Special considerations for COTS/ERP implementations
- Context of risk management
- Using risk management to drive effective performance
Overview

- COTS implementations require significant enterprise involvement
 - Especially ERP (PeopleSoft, SAP, MAXIMO)
 - Install-then-configure versus requirements-develop-deploy lifecycle
 - Developers must understand the business as well as the product
 - Enterprise leads and SMEs must be pre-trained in the product

- Use risk management to estimate future performance
 - Give advanced view versus “rear-view”
 - A scorecard approach gives quick insight to leadership and project team

- Define effective performance based on ISO 9001 criteria
 - Supplement ISO 9001 criteria with other implementation-specific critical success factors
Key business management questions:

- Where are we?
- How are we doing? (Are we where we should be?)
- Will we get there on time and in budget?
Classical quality management delivers service against expectations only to a point for COTS implementations

- Implementing under ISO 9001 will yield a more effective solution

- Classical quality management sets up systematic organizational learning
 - Audits are based on interviews and inspections of historical data
 - Focus is on improvement – Better results “next time”

- Issue: COTS – especially ERP – solutions do not have a “next time”
 - Installed, configured, customized, validated, and DONE!

- Problem: “It’s hard to implement COTS using the rear view mirror”
 - COTS implementation projects need a forward looking approach within the QMS

Risk management techniques can be used to preview performance of the ISO 9001 QMS
Quality control checkpoints in the COTS lifecycle give insight into “where we are” – not “will we get there”
A practical practice for ERP solutions is to imbed a risk management process within the QMS.

Schematic representation of a QMS for ERP Implementation (Partial)*

<table>
<thead>
<tr>
<th>Processes ====></th>
<th>Procedures ==></th>
<th>Quality Records</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program Management Process</td>
<td>Audit Procedure</td>
<td>Audit Report</td>
</tr>
<tr>
<td></td>
<td>Program Planning Procedure</td>
<td>Corrective Action Report</td>
</tr>
<tr>
<td></td>
<td>Documentation Standard</td>
<td>Project Plan/Master Schedule</td>
</tr>
<tr>
<td></td>
<td>Risk & Issues Procedure</td>
<td>Deliverable Signoff Form</td>
</tr>
<tr>
<td></td>
<td>Action Items List Procedure</td>
<td>Issues Log</td>
</tr>
<tr>
<td>Requirements Management Process</td>
<td>Requirements Management Procedure</td>
<td>Risk Log</td>
</tr>
<tr>
<td></td>
<td>Fit/Gap Procedure</td>
<td>Action Items Log</td>
</tr>
<tr>
<td></td>
<td>Requirements Change Procedure</td>
<td>Requirements Worksheet</td>
</tr>
</tbody>
</table>

*Caution – illustrative: Shows only a partial view of the QMS.
Risk management in ISO 9001 is “Preventive Action*.” The quality management system must include actions to...

- Eliminate causes of potential nonconformities
- Prevent their occurrence
- Take actions appropriate to the effects of the potential problems
- Develop a written procedure to define requirements for
 - Determining potential nonconformities and their causes
 - Evaluating need for action to prevent occurrence
 - Determining and implementing action needed
 - Record actions taken
 - Review actions taken

*Reference para. 8.5.3, ISO 9001:2000
Under AS 4360:2004, risk management includes…

- Establish the context
- Identify risks
- Evaluate risks
- Treat risks
- Risk management plan

NOTE:
The design and implementation of the risk management system is influenced by the varying needs of an organization, its objectives, its products and services, and the specific practices employed.
Under CMMI[^SM] risk management includes…

- Determine risk sources and categories
- Define risk parameters
- Establish risk management strategy
- Identify and analyze risks
 - Identify risks
 - Evaluate, categorize and prioritize risks
- Mitigate risks
 - Develop risk mitigation plans
 - Implement risk mitigation plans

Reference: Capability Maturity Model® Integration (CMM[^SM]), Version 1.1. CMM and Capability Maturity Model are registered in the U.S. Patent and Trademark Office. CMM Integration, CMMI, SCAMPI, and IDEAL are service marks of Carnegie Mellon University.
Risk management gives a prediction of future (expected) performance based on critical success factors

- All mainstream risk management methodologies have similar features

- Risk management can become a project unto itself

- Recommended approach: Use risk management practices and ISO 9001 criteria to define a scorecard approach with critical success factors
A risk assessment estimates the likelihood of project achievements based on the project’s critical path.

Example: Risk assessment for a PeopleSoft HR implementation

<table>
<thead>
<tr>
<th>CRITICAL PATH ACTIVITIES</th>
<th>START BY</th>
<th>COMPLETE BY</th>
<th>OWNER</th>
<th>ACCEPT</th>
<th>RISK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Install PeopleSoft/Prepare Environments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DVT</td>
<td>1-Nov</td>
<td>1-Dec</td>
<td>NR</td>
<td>LM</td>
<td></td>
</tr>
<tr>
<td>TST1</td>
<td>1-Nov</td>
<td>26-Dec</td>
<td>NR</td>
<td>LM</td>
<td></td>
</tr>
<tr>
<td>TST2</td>
<td>15-Nov</td>
<td>31-Dec</td>
<td>NR</td>
<td>LM</td>
<td></td>
</tr>
<tr>
<td>QA1</td>
<td>1-Dec</td>
<td>15-Jan</td>
<td>JR</td>
<td>KS</td>
<td></td>
</tr>
<tr>
<td>Complete Data Conversion</td>
<td>1-Nov</td>
<td>11-Dec</td>
<td>JM</td>
<td>RH, KS, JZ, WJ</td>
<td></td>
</tr>
<tr>
<td>CRP #1 - Validate security profiles</td>
<td>3-Dec</td>
<td>20-Dec</td>
<td>RS</td>
<td>RH, KS, JZ, WJ</td>
<td></td>
</tr>
<tr>
<td>CRP #2 - Setup Employee Profile</td>
<td>21-Dec</td>
<td>20-Jan</td>
<td>RS</td>
<td>KS, JZ, WJ</td>
<td></td>
</tr>
<tr>
<td>CRP #3 - Interface validation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRP #3A - Interface to T&L</td>
<td>23-Dec</td>
<td>22-Jan</td>
<td>TB</td>
<td>JS, KS</td>
<td></td>
</tr>
<tr>
<td>CRP #3B - Interface to Benefits</td>
<td>26-Dec</td>
<td>25-Jan</td>
<td>MG</td>
<td>TK, KS</td>
<td></td>
</tr>
<tr>
<td>CRP #3C - Interface to Medical systems</td>
<td>26-Dec</td>
<td>4-Feb</td>
<td>KV</td>
<td>PL, KS</td>
<td></td>
</tr>
<tr>
<td>CRP #4 - Employee Requisition</td>
<td>20-Dec</td>
<td>19-Jan</td>
<td>RS</td>
<td>KS, JZ, WJ</td>
<td></td>
</tr>
<tr>
<td>CRP #5 - Benefits</td>
<td>20-Dec</td>
<td>29-Jan</td>
<td>MM</td>
<td>KS, TK</td>
<td></td>
</tr>
<tr>
<td>CRP #6 - Compensation</td>
<td>10-Jan</td>
<td>19-Feb</td>
<td>JG</td>
<td>KS, JZ, WJ</td>
<td></td>
</tr>
<tr>
<td>CRP #7 - End-to-End</td>
<td>24-Jan</td>
<td>1-Mar</td>
<td>MM</td>
<td>KS, JZ, WJ, TK, PL</td>
<td></td>
</tr>
<tr>
<td>Pilot/Parallel Test</td>
<td>6-Mar</td>
<td>5-May</td>
<td>RS</td>
<td>KS, JZ, WJ, TK, PL</td>
<td></td>
</tr>
</tbody>
</table>
Risk severity is determined by summarizing the expected state of the critical success factors.

Example: Risk assessment for a PeopleSoft HR implementation with critical success factors

<table>
<thead>
<tr>
<th>CRITICAL PATH ELEMENT</th>
<th>CRITICAL SUCCESS FACTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configure/customize COTS - Phase 1</td>
<td>Risk Assessment - Week 1</td>
</tr>
<tr>
<td></td>
<td>Risk Assessment - Week 2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Activity #1</td>
<td></td>
</tr>
<tr>
<td>Activity #2</td>
<td></td>
</tr>
<tr>
<td>Activity #3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shows trends

CAUTION:
Representative success factors used here may not correspond to or be appropriate for your project.
Critical success factors are ISO 9001 criteria, tailored to the COTS implementation and augmented by lessons learned.

Representative critical success factors:

- Lead assigned
- Lead trained in COTS functionality
- SMEs assigned
- SMEs trained in COTS functionality
- Lead & SMEs trained in ERP Business practices
- Acceptance Criteria drafted
- Acceptance Criteria accepted/signed by Stakeholders
- Plan/Schedule drafted
- Plan/Schedule Signed off by all parties

ISO 9001:2000 para. 6.2.2:
- Competence/Awareness
- Training

ISO 9001:2000 para. 7.2.1 & 7.3.1:
- Review of Requirements related to product
- Responsibilities & authorities for design and acceptance

ISO 9001:2000 para. 7.3.1:
- Plan & control design & development
In summary, risk management methodology can be used to assess future performance of the ISO 9001 QMS

- Use ISO 9001 criteria to identify risk areas
- Supplement with detail and priority based on COTS implementation lifecycle and lessons learned
- Use a scorecard representation to streamline communication
- Updated on a regular basis by the QA staff
- Posted in generally accessible location (e.g., company intranet)