Fixing Software Inspections

Washington DC – Users Group

July 22, 2008

7962 Old Georgetown Road, Suite B, Bethesda MD 20814
865-458-6685 ï Fax: 865-458-9139 ï SPGroup@charter.net
www.stewart-priven.com
What Are Inspections?

- Software Inspections are a pre-emptive peer review of work products
 - By 3-5 trained individuals (e.g., stakeholders) using a well defined (formal) process
 - To detect and eliminate defects as early as possible in the Software Development Life Cycle, or closest to the points of injection

Commonly inspected work products include:
- Requirements
- Design
- Interface Agreements
- Code, Test Material, or other text

- Referred to as 'Peer Reviews' in Capability Maturity Model (CMM) and CMMI
Stewart- Priven Background

30 years software development experience (each)
- Commercial, Executive Mgmt. Focus
- Government, Technical/Project Mgmt. Focus

Managed IBM team that developed Inspections (led by M. Fagan)

Both taught Inspections for M. Fagan 1998 – 2005
- 50 company locations, 250 classes, 5000 practitioners

SPG, LLC formed Feb. 2006
- Systems & Software Technology Conference, Tutorial June 2007 - Tampa
- Crosstalk Magazine Article January 2008
- Practical Software Quality & Testing, Two Presentations May 2008 - Las Vegas
- International Conference - SW Process Improvement: October 2008 Wash. DC
 - Tutorial Topic: New Direction for the Inspection (Peer Review) Process
 - Presentation Topic: Management Responsibilities for Successful Inspections
Concerns of Other Industry Experts

- 'Formal inspections . . . part of the problem here is that not a lot of companies know how to use these things.' Capers Jones, Chief Scientist, SPR – "Computer Aid Inc. July 2005"

- Yet for others, Inspections never succeeded as well as expected, primarily because these organizations did not learn how to make Inspection both effective and low cost. Ron Radice - “High Quality Low Cost Software Inspections, 2002 Paradoxicon Publishing”

- Inspections . . . with the right instrumentation and training they are one of the most powerful techniques for defect detection. Chris Ebert - “IEEE Software Jan/Feb 2000, Best Influences on Software Engineering over past 50 years”
Inspection Pitfalls

Pitfalls cause inspections to fail! Each must be Resolved

1. Lack of supportive Development Life-Cycle infrastructure for Inspections
2. Lack of understanding by upper managers of the process, benefits, their role
3. No Management tools for up-front planning, and estimating potential savings
4. No Time incorporated in development schedules for performing inspections; and
 - No Criteria established for selecting quality-critical areas to inspect
5. No Inspector tools for correct & consistent execution, assessment, & reporting
6. Limited Monitoring of inspection execution and results
7. No post-class student refresher
8. Lack of Company Champion to facilitate consistent implementation
9. Too much elapsed time occurs between training of project team members
10. No Company Inspection Process Capture mechanism

Fixing SW Inspections July 22, 2008

Each Inspection Pitfall Must be Resolved
Resolving Inspection Pitfalls

SOLUTIONS to Fixing SW Inspections

<table>
<thead>
<tr>
<th></th>
<th>PITFALL #s</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Pre-Requisite Assessment of client SDLC</td>
<td>1</td>
</tr>
<tr>
<td>b. Upper management class in ‘Managing Inspections’</td>
<td>2, 4, 8, 9</td>
</tr>
<tr>
<td>c. Tools for Management Planning, Savings, Monitoring, Tracking, & Process Capture</td>
<td>3, 4, 6, 10</td>
</tr>
<tr>
<td>d. Inspector Tools (Preparation, Execution, Analysis)</td>
<td>5</td>
</tr>
<tr>
<td>e. Student Refresher</td>
<td>7</td>
</tr>
<tr>
<td>f. Rapid training capability (<= 2 days) & Mgmt. Commitment</td>
<td>9</td>
</tr>
<tr>
<td>g. Inspector Support</td>
<td>7</td>
</tr>
<tr>
<td>- Student class feedback to Management</td>
<td></td>
</tr>
<tr>
<td>- Inspection Role Reference Card</td>
<td></td>
</tr>
<tr>
<td>- Product Inspection Checklist Kit</td>
<td></td>
</tr>
<tr>
<td>- Course material tailoring</td>
<td></td>
</tr>
</tbody>
</table>

A foundation for: **AN INSPECTION ‘METHODOLOGY’!**
Using an Inspection ‘Methodology’

Development Infrastructure

1a. Est. net saving from inspection;
1b. Perform assessment of Development Infrastructure

2. Tuning Recommendation; & any Prerequisite Infrastructure Implementation

Inspection Tools & Training

3. Inspection Methodology:
 - Training & Tools
 a. Enabling Infrastructure
 b. Management Instruction
 c. Tools for Planning, Savings, Monitoring, Tracking, Capture
 d. Inspector tools
 e. Student Refresher
 f. Rapid Training
 g. Support: ref. card, checklist kit, material tailoring

Implementation

4. Performance Consulting and Coaching
 a. Enabling Infrastructure
 b. Management Instruction
 c. Tools for Planning, Savings, Monitoring, Tracking, Capture
 d. Inspector tools
 e. Student Refresher
 f. Rapid Training
 g. Support: ref. card, checklist kit, material tailoring

To Solve and Prevent Inspection Pitfalls
PlanSpector™ Before any Inspections

- Supports Project Planners acquiring and providing senior management with cost savings data to support using inspections

InSpector™ During Inspection

- Supports Inspection team finding maximum defects through proper inspection process execution

TrackSpector™ After Inspection

- Supports Management with immediate results, savings and ROI of individual and multiple inspections
Stewart-Priven Inspection Tools

Planning Tools (Project Planers)

Execution & Analysis Tools (Inspection Leader with team)

Tracking & Monitoring Tools (Managers)

Before any Inspections

PlanSpector™

Tool Use Sequence

1. Inspection Planning Counter
2. Project Savings/Cost Estimator

During Inspection

InSpector™

3. Inspection Preparation Tool
4. Inspection Meeting Log Tool
5. Analysis Tool

After Inspection

TrackSpector™

6. ROI Calculators
 - Requirements
 - Design
 - Code
7. Aggregate Results Calculator
8. Defect Detection Evaluation Tool

Fixing SW Inspections July 22, 2008
Inspection Steps: Objective, Find & Fix Product Defects

Where are Inspection Tools Used?

- **SpectorTool Suite™**
 - **PlanSpector™**
 1. Planning Counter
 2. Savings Estimator
 - **InSpector™**
 3. Preparation Tool
 4. Meeting Log Tool
 5. Analysis Tool
 - **TrackSpector™**
 6. ROI Calculators
 7. Aggregate Calculator
 8. Defect Detection Evaluation Tool

Consistent with IEEE Standard 1028 for Inspections
(IEEE - Institute of Electrical and Electronics Engineers, Inc.)
Planning Inspection Tools for Management

Project Planning
- Planning Counter
- Savings Estimator

Inspection Execution Monitoring
- Analysis Tool
- ROI Calculator

Post-Inspection Savings & Defect Tracking
- ROI Calculator
- Aggregate Calculators
- Defect Detection Evaluation Tool

Number of project inspections and hours to conduct

Cost of using vs. not using inspections; net project savings

Decision: Use vs. Don’t use

PlanSpector™ | InSpector™ | TrackSpector™ | TrackSpector™
Monitoring Inspection Tools for Management

Project Planning
- Planning Counter
- Savings Estimator

Inspection Execution Monitoring
- Analysis Tool
- ROI Calculator

Post-Inspection Savings & Defect Tracking
- ROI Calculator
- Aggregate Calculators
- Defect Detection Evaluation Tool

Summary of product problems found, inspection metrics, and warnings if insp. performance limits exceeded

Decision: proceed or partial, or full Re-Inspection

Inspection Meeting:
- Preliminary estimate of hours for Insp. vs. hours if no Insp., plus net hours saved, ROI and Defect Density
Tracking Inspection Tools for Management

Project Planning
- Planning Counter
- Savings Estimator

Inspection Execution Monitoring
- Analysis Tool
- ROI Calculator

Post-Inspection Savings & Defect Tracking
- ROI Calculator
- Aggregate Calculators
- Defect Detection Evaluation Tool

Inspection Exit:
Number of Defects Fixed & Verified, plus updated insp. cost, Net Savings, ROI and Defect Density

Consolidated phase defect discovery counts from testing, inspection, and other activities:
Tracks Quality Goals and provides Inspection effectiveness calibration for Release to Release and Org. to Org. from phase defect comparisons

To-Date Totals
Consolidated net savings, ROI, and Defect Density by Requirement, Design, and Code Inspections; plus trend analysis graphs for defect reasons, origin, and severity
Practitioner Inspection Tools

Inspection Execution

- **Preparation Tool**
 - Supports Leader in determining if Insp. team is adequately prepared? (time, material, questions)
 - Decision: Has foundation been established to proceed or Complete Preparation

- **Meeting Log Tool (1)**
 - Collect consistent and complete problem data; including metrics to support development process improvement, and defect classification totals
 - Tool also used later at inspection exit to confirm identified defects have been fixed

- **Meeting Log Tool (2)**
 - Used to update inspection mtg. information at inspection exit to confirm identified defects have been fixed; and for any updates to defect classifications

- **Analysis Tool**
 - Identifies areas where inspection performance limits may be compromised
 - Summary of product problems found, insp. metrics and improvements for next inspection

- **ROI Calculator**
 - Insp. Meeting: Estimate of net hours saved, ROI and Defect Density

* Primarily a management tool, but is available to inspection team during Analysis step

- InSpector™
- TrackSpector™

Fixing SW Inspections July 22, 2008
Inspection Tool Wrap-up

Where are Inspection Tools Used?

1. Planning Counter
2. Savings Estimator
3. Preparation Tool
4. Meeting Log Tool
5. Analysis Tool
6. ROI Calculators
7. Aggregate Calculator
8. Defect Detection Evaluation Tool

Consistent with IEEE Standard 1028 for Inspections
(IEEE - Institute of Electrical and Electronics Engineers, Inc.)
AN IMPROVED QUALITY (and Cost) PROCESS
Integrating an Inspection Methodology into the Software Development Life Cycle

Before Development

- Estimate net project cost savings from inspections
- Ensure development infrastructure is ready for inspections
- Make necessary changes to infrastructure to handle inspections
- Setting & Measuring Quality Goals for earlier Defect Detection
 - Potentials
 - Aggregate Defect Potentials
 - Detection History
 - Set Quality Goals

Gather:
- Defect Potentials
- Detection History
- Set Quality Goals

During Development

- Train Staff in Inspection Process
- Train Mgmt. in Insp. Responsibilities
- Collect Individual inspection data
- Generate Management inspection reports (interim & final)

- Review Final Defect Reports
- Make Process Adjustments
- Set new quality goals
- Proceed

AN IMPROVED QUALITY (and Cost) PROCESS
Integrating an Inspection Methodology into the Software Development Life Cycle

Before Development

- Estimate net project cost savings from inspections
- Ensure development infrastructure is ready for inspections
- Make necessary changes to infrastructure to handle inspections
- Setting & Measuring Quality Goals for earlier Defect Detection
 - Potentials
 - Aggregate Defect Potentials
 - Detection History
 - Set Quality Goals

Gather:
- Defect Potentials
- Detection History
- Set Quality Goals

During Development

- Train Staff in Inspection Process
- Train Mgmt. in Insp. Responsibilities
- Collect Individual inspection data
- Generate Management inspection reports (interim & final)

- Review Final Defect Reports
- Make Process Adjustments
- Set new quality goals
- Proceed

After Development

- Inspection Execution Support & Implementation Review
- Review Final Defect Reports
- Make Process Adjustments
- Set new quality goals
Fixing Software Inspections - Wrap-Up

Use an Inspection **Methodology** that ensures

- Project’s infrastructure is ready for, and can support, inspections
- Management understands the process, its benefits and their responsibility
- Computerized tools for project inspection planning and savings estimation
- Computerized tools for Inspector’s correct and consistent execution
- Computerized tools for management inspection monitoring & results tracking
- Rapid training and student refreshers provided, along with ongoing inspection champion support
- Tool use repeatability for Inspection conduct-continuity and metric collection across teams, organizations, projects, locations, vendors
- Measurement of actual defect detection to ensure project quality goals for early defect removal are being achieved

an ‘Inspection Methodology’ provides much more than an ‘Inspection Process’
Stewart-Priven Group - Contact Information

Address	Stewart-Priven Group, LLC
Address	7962 Old Georgetown Road, Suite B
Telephone	865-458-6685
Email	spgroup@charter.net
Website	www.stewart-priven.com

STEWART-PRIVEN GROUP

- **Software Inspection**
- **Methodology**
- **Experts**

Avoiding Inspection Pitfalls

SpectorTool Suite™

PlanSpector™

InSpector™

TrackSpector™

Development Infrastructure

1. Review & Assessment of Development Infrastructure
2. Tuning Recommendation; & any Prerequisite Infrastructure Implementation
3. SPG Inspection Methodology: Tools & Training
4. Performance, Consulting and Coaching

Stewart-Priven Methodology

www.stewart-priven.com
Reference Material
Additional Benefits of Inspections

- Use of inspection tools supports continuity & metrics across teams, organizations, projects, locations, companies
- Inspections are the fastest way to learn new products/domains
- Consistent adoption of software and text standards
- Early identification of defect-prone work products
- Avoid repeating defects by providing rapid feedback to the developers
- Sharing of good ideas and identification of less effective approaches
- Reduce defect injection by optional identification and removal of process defects
Inspection Pitfall #1 – Development Infrastructure

Lack of supportive Software Development Life Cycle infrastructure

Pitfall Risks:
Å Successful Inspections require skill in:
 få Planning
 få Data Collection
 få Reporting
 få Monitoring
 få Measurement Tracking

Å Cultures without development infrastructures encompassing these skills are fraught with risk!
 få Critical inspection deviations introduced
 få Findable defects escape to later more costly phases

CMM®, CMMI® introduce Peer Reviews® at level 3

Refer to Roadmap chart
Inspection Pitfall #2 – Management Understanding

Lack of understanding by upper management and project leaders of the Inspection process, its benefits, and their role

Pitfall Risks:
- Slow or incomplete Project team training and implementation
- Inadequate schedule, or no time allocated to inspections
- Inspection execution not monitored; results not tracked
- No 'Champion' (focal point) to facilitate Inspection implementation
Inspection Pitfall #3 – Savings Estimation

No computerized management tools for up-front inspection planning and estimating savings

Pitfall Risks:

Â Not understanding project's cost impact of not doing inspections

ï Tools not available to accurately estimate:
 Â Cost of performing inspections
 Â Net project savings of performing inspections

Â Results in no inspections or not enough inspections
Inspection Pitfall #4 – Time in Schedule

No time in development schedules for performing Inspections; No criteria for selecting quality-critical areas to inspect

Pitfall Risks:
Â Life-Cycle view of investing early to reap benefits later not understood, or practiced
 Ÿ Inspections not a stand-alone quality process
Â Cost and Schedule impacts primarily borne by up-front requirements, design and implementation groups
 Ÿ while benefits accrue to later testing phases and customer use
Â Inspections rushed, not performed correctly, or not done
Â Malicious Compliance emerges - check the box - go through the motions
Â Findable defects escape to later more costly phases

Management at all levels in each development phase must support
Inspection Pitfall #5 – Inspection Execution

No computerized inspector tools to aid consistent and correct execution, analysis, and reporting inspection results

Pitfall Risk:

 Å Inconsistency and compromising shortcuts take hold

 Å No reinforcement, or feedback on improving inspection execution

 Å Management difficulty monitoring inconsistent inspection execution

 Å Findable defects escape to later more costly phases
Inspection Pitfall #6 – Monitoring & Tracking Results

Inadequate management monitoring and tracking of inspection execution and inspection results

Pitfall Risk:

Â Inspection process adherence and consistent execution deteriorates

Â Findable defects escape to later more costly phases

Â Management doesnât see inspection ROI, or defect-prone areas

Â Employees eventually lose interest when benefits not periodically shared
Inspection Pitfall #7 – No Refresher

No post-class student refresher

Pitfall Risks:
• No reinforcement of key inspection principles

• Process misunderstandings; compromising shortcuts introduced

• Post-class situations from project inspections not handled effectively
 • Employees incorrectly conclude inspections not compatible with their environment

• Findable defects escape to later more costly phases

• Inspection implementation doesn’t complete or not fully deployed
Inspection Pitfall #8 – No Champion

Lack of Company (Project) Champion to facilitate consistent Inspection implementation

Pitfall Risks:

- Issues, situations, and resolutions not addressed or coordinated across other affected development areas or project teams

- Inconsistent and incorrect Inspection execution on same project

- Other projects implement Inspections differently
 - results not comparable or able to be consolidated (rolled-up)

- No timely support - findable defects escape to later more costly phases

- Little valuable feedback to management
Training period for project teams is too long

Pitfall Risks:

- Ineffective start – too many untrained inspectors
 - Incorrect execution

- Acquired training skills deteriorate waiting for more trained inspectors

- Inspections never start – waiting on more people to be trained

- Findable defects continue to escape to testing, or worse
Inspection Pitfall #10 – Process Capture

No company Inspection process capture

Pitfall Risks:
Â No inspection process reference
 ï Inspection training material not effective long-term reference

Â Process misunderstood, inconsistent and incorrectly executed

Â No repository for project’s Inspection lessons learned

Â Inspections not identified and included in company culture and SDLC
 ï Incorrectly viewed as stand-alone process

Â Inspections fail
Inspection Tools for Management

Project Planning
- Planning Counter
- Savings Estimator

Number of project inspections and hours to conduct

Inspection Execution Monitoring
- Analysis Tool
- ROI Calculator

Summary of product problems found, inspection metrics, and warnings if insp. performance limits exceeded

Post-Inspection Savings & Defect Tracking
- ROI Calculator
- Aggregate Calculators
- Defect Detection Evaluation Tool

Inspection Exit: Number of Defects Fixed & Verified, plus updated insp. cost, Net Savings, ROI and Defect Density

Consolidated phase defect discovery counts from testing, inspection, and other activities: Tracks Quality Goals and provides Inspection effectiveness calibration for Release to Release and Org. to Org. from phase defect comparisons

Summary of product problems found, inspection metrics, and warnings if insp. performance limits exceeded

Decision: proceed or partial or full Re-Inspection

Decision: Use vs. Don’t use

Inspection Meeting
- Preliminary estimate of hours for Insp. vs. hours if no Insp., plus net hours saved, ROI and Defect Density

To-Date Totals
- Consolidated net savings, ROI, and Defect Density by Requirement, Design, and Code Inspections; plus trend analysis graphs for defect reasons, origin, and severity

Fixing SW Inspections July 22, 2008
Management Inspection Performance Class

Objective:
• Provide management with understanding of their responsibilities and the tools to be successful for the short and long term

Agenda:
1. What can inspections do for you
2. What is the inspection process
3. What is management’s role/responsibilities
4. How to plan for inspections
5. How to estimate inspection savings
6. How to collect inspection data
7. How to analyze inspection data
8. How to deal with inspection pitfalls & challenges
Inspection Class Agenda for Practitioners

1. Teams and Case Study Material
 Course Objectives

2. Developing with Inspections
 and the Role of Process

3. Inspection Process Objectives
 Where and When to Inspect

4. Inspection Process
 Inspection Defect Definitions

5. Inspector Selection, Roles
 and Responsibilities

6. Inspection Scenario

7. Team Case Study
 Å Part2: Req. Doc

8. Evaluating Inspection Data

9. Inspection Situations

10. Inspection Savings
 Management Roles/Responsibilities

Getting Started!

--- Half Day ---

--- Quarter Day ---

--- One Day ---
Objectives of the Stewart–Priven Group (SPG), LLC

- Expand the industry use of best-practice quality software inspections by introducing an 'Inspection Methodology' which provides for:
 1. A comprehensive set of management inspection tools for planning, projecting savings, monitoring, and tracking inspections across projects and organizations
 2. Ensuring client development infrastructure can support inspections
 3. Rapid inspector training including computerized tools, checklists, and reference card
 4. Follow-on support for management and inspectors
 5. Compliance with 'IEEE Standard 1028 for Inspections'

- SPG was formed in 2006 by Roger Stewart and Lew Priven
 - Both have extensive development experience and experience in implementing, managing, and training the inspection process
 - Collectively they've trained over 5,000 inspectors at more than 50 company locations in the U.S., Europe and Japan for Michael Fagan Associates

- Roger and Lew co-authored 'How to Avoid Software Inspection Failure and Achieve Ongoing Benefits,' published in CROSSTALK Jan. 2008

- Roger and Lew spoke at the June 2007 SSTC and the May 2008 PSQT conferences about removing common pitfalls associated with implementing inspections, and use of effective computerized Mgmt. and inspector tools
Lew Priven

Lew Priven is an experienced executive with an extensive management and technical background including system and software development, software quality training, management development training, human resource management, and executive management.

Prior to co-founding the Stewart-Priven Group, LLC, Lew was an Associate with Michael Fagan Associates, where he trained over 2,000 students at 24 company locations in the Fagan Inspection Process.

Before joining Michael Fagan Associates, Lew was Chief Operating Officer of Wellspring Resources, LLC. Among his responsibilities at Wellspring, he managed the rapid growth of the Washington, DC application development center. To help manage the growth, he introduced and made extensive use of inspections to insure the quality and timely delivery of software supporting the delivery of outsourced benefits administration services.

Lew was Vice-President of Engineering and Application Development at General Electric Information Services (GEIS). While at GEIS he introduced inspections for verifying the accuracy and usability of procedures for the introduction of software and network upgrades.

Lew held a number of positions at IBM including: Vice President of Application Development for IBM's Application Systems Division, Director of Operations and Development for the IBM Information Network, and Vice President of Information Technology and Human Resources for Satellite Business Systems. He also served as a Director on the Corporate Technology Staff.

During development of IBM's MVS operating system, Lew formed and managed the team, led by Michael Fagan, to improve the quality of software. The team's work resulted in the development of the inspection process.

In addition to his work on inspections, Lew received an IBM Outstanding Contribution Award for developing the Continuous Integration process.

Lew has a BS in Electrical Engineering from Tufts University and an MS in Management from Rensselaer Polytechnic Institute.
Roger Stewart

Roger Stewart is an experienced Lead Systems Engineer and Program Manager with an extensive management and technical background including Systems Engineering, Software Development, System Integration, System Testing, and Process Improvement.

Prior to co-founding the Stewart-Priven Group LLC, Roger was an Associate with Michael Fagan Associates, where he trained over 3,000 students at 30 company locations in the Fagan Inspection Process.

Before joining Michael Fagan, the founder of software inspections, Roger worked for IBM Federal Systems, and later Lockheed-Martin Federal Systems, developing large complex software systems for the Space Shuttle, Satellite Command and Control, Air Traffic Control, and military avionics systems. He also worked in the commercial sector developing Banking, Telecommunications, and Networking and Operating system software.

Roger's first use of formal inspections occurred while managing the On-Board Space Shuttle Guidance, Navigation and Computer Redundancy Management software. For the rest of his career, inspections formed an integral part of projects he managed and worked on. (The On-Board Space Shuttle software program was the first to earn the coveted SEI CMM Level 5 rating.)

Roger was the architect and lead author for advancing the Software Development Life Cycle for the IBM Telecommunications Systems Development Process, which included introducing and defining their inspection process. This work was recognized with an IBM Communications Division level award.

While on a 3-year assignment in Sydney Australia to manage the development of a new generation of banking applications and services, Roger was the Program Manager for defining and implementing the Software Development life cycle - including the introduction and definition of inspections.

While the Test Architect for Air Route Traffic Control System Upgrade programs, Roger defined the end-to-end test and acceptance life cycle and the inspection process used.

Roger has a BS in Mathematics from Cortland University.